
Big Data Analytics

Introduction

1

Theme of this Course

Large-Scale Data Management

Big Data Analytics

Data Science and Analytics

• How to manage very large amounts of data and extract value and

knowledge from them

2

Introduction to Big Data

What is Big Data?

What makes data, “Big” Data?

3

Big Data Definition

• No single standard definition…

“Big Data” is data whose scale, diversity, and

complexity require new architecture, techniques,

algorithms, and analytics to manage it and extract

value and hidden knowledge from it…

4

Characteristics of Big Data:

1-Scale (Volume)

• Data Volume

• 44x increase from 2009 2020

• From 0.8 zettabytes to 35zb

• Data volume is increasing exponentially

5

Exponential increase in

collected/generated data

Characteristics of Big Data:

2-Complexity (Varity)

• Various formats, types, and

structures

• Text, numerical, images, audio,

video, sequences, time series, social

media data, multi-dim arrays, etc…

• Static data vs. streaming data

• A single application can be

generating/collecting many types

of data

6

Characteristics of Big Data:

3-Speed (Velocity)

• Data is begin generated fast and need to be processed fast

• Online Data Analytics

• Late decisions  missing opportunities

• Examples

• E-Promotions: Based on your current location, your purchase history,

what you like  send promotions right now for store next to you

• Healthcare monitoring: sensors monitoring your activities and body 

any abnormal measurements require immediate reaction

7

Big Data: 3V’s

8

Some Make it 4V’s

9

Harnessing Big Data

• OLTP: Online Transaction Processing (DBMSs)

• OLAP: Online Analytical Processing (Data Warehousing)

• RTAP: Real-Time Analytics Processing (Big Data Architecture & technology)

10

Who’s Generating Big Data

Social media and networks

(all of us are generating data)
Scientific instruments

(collecting all sorts of data)

Mobile devices

(tracking all objects all the time)

Sensor technology and networks

(measuring all kinds of data)

• The progress and innovation is no longer hindered by the ability to collect data

• But, by the ability to manage, analyze, summarize, visualize, and discover

knowledge from the collected data in a timely manner and in a scalable fashion

11

The Model Has Changed…

• The Model of Generating/Consuming Data has Changed

Old Model: Few companies are generating data, all others are consuming data

New Model: all of us are generating data, and all of us are consuming data

12

What’s driving Big Data

- Ad-hoc querying and reporting

- Data mining techniques

- Structured data, typical sources

- Small to mid-size datasets

- Optimizations and predictive analytics

- Complex statistical analysis

- All types of data, and many sources

- Very large datasets

- More of a real-time

13

Value of Big Data Analytics

• Big data is more real-time in nature

than traditional DW applications

• Traditional DW architectures (e.g.

Exadata, Teradata) are not well-

suited for big data apps

• Shared nothing, massively parallel

processing, scale out architectures

are well-suited for big data apps

14

Challenges in Handling Big Data

• The Bottleneck is in technology

• New architecture, algorithms, techniques are needed

• Also in technical skills

• Experts in using the new technology and dealing with big data

15

What Technology Do We Have

For Big Data ??

16

17

Big Data Technology

18

What You Will Learn…

• We focus on Hadoop/MapReduce technology

• Learn the platform (how it is designed and works)

• How big data are managed in a scalable, efficient way

• Learn writing Hadoop jobs in different languages

• Programming Languages: Java, C, Python

• High-Level Languages: Apache Pig, Hive

• Learn advanced analytics tools on top of Hadoop

• RHadoop: Statistical tools for managing big data

• Mahout: Data mining and machine learning tools over big data

• Learn state-of-art technology from recent research papers

• Optimizations, indexing techniques, and other extensions to Hadoop

19

Course Logistics

20

Course Logistics

• Web Page: http://web.cs.wpi.edu/~cs525/s13-MYE/

• Electronic WPI system: blackboard.wpi.edu

• Lectures

• Tuesday, Thursday: (4:00pm - 5:20pm)

21

http://web.cs.wpi.edu/~cs525/s13-MYE/
http://web.cs.wpi.edu/~cs525/s13-MYE/
http://web.cs.wpi.edu/~cs525/s13-MYE/
http://web.cs.wpi.edu/~cs525/s13-MYE/
http://web.cs.wpi.edu/~cs525/s13-MYE/

Textbook & Reading List

• No specific textbook

• Big Data is a relatively new topic (so no fixed syllabus)

• Reading List

• We will cover the state-of-art technology from research papers in big
conferences

• Many Hadoop-related papers are available on the course website

• Related books:

• Hadoop, The Definitive Guide [pdf]

22

http://net.pku.edu.cn/~course/cs402/2011/book/2009-Book-Hadoop the Definitive Guide.pdf

Requirements & Grading

• Seminar-Type Course

• Students will read research papers and present them (Reading List)

• Hands-on Course

• No written homework or exams

• Several coding projects covering the entire semester

Done in teams

of two

23

http://web.cs.wpi.edu/~cs525/s13-MYE/readings.html

Requirements & Grading (Cont’d)

• Reviews

• When a team is presenting (not the instructor), the other students should prepare a
review on the presented paper

• Course website gives guidelines on how to make good reviews

• Reviews are done individually

24

Late Submission Policy

• For Projects

• One-day late  10% off the max grade

• Two-day late  20% off the max grade

• Three-day late  30% off the max grade

• Beyond that, no late submission is accepted

• Submissions:

• Submitted via blackboard system by the due date

• Demonstrated to the instructor within the week after

• For Reviews

• No late submissions

• Student may skip at most 4 reviews

• Submissions:

• Given to the instructor at the beginning of class

25

More about Projects

• A virtual machine is created including the needed platform for the projects

• Ubuntu OS (Version 12.10)

• Hadoop platform (Version 1.1.0)

• Apache Pig (Version 0.10.0)

• Mahout library (Version 0.7)

• Rhadoop

• In addition to other software packages

• Download it from the course website (link)

• Username and password will be sent to you

• Need Virtual Box (Vbox) [free]

26

http://web.cs.wpi.edu/~cs525/s13-MYE/project.html

Next Step from You…

1. Form teams of two

2. Visit the course website (Reading List), each team selects

its first paper to present (1st come 1st served)

• Send me your choices top 2/3 choices

3. You have until Jan 20th

• Otherwise, I’ll randomly form teams and assign papers

4. Use Blackboard “Discussion” forum for posts or for

searching for teammates

27

http://web.cs.wpi.edu/~cs525/s13-MYE/readings.html

Course Output: What You

Will Learn…

• We focus on Hadoop/MapReduce technology

• Learn the platform (how it is designed and works)

• How big data are managed in a scalable, efficient way

• Learn writing Hadoop jobs in different languages

• Programming Languages: Java, C, Python

• High-Level Languages: Apache Pig, Hive

• Learn advanced analytics tools on top of Hadoop

• RHadoop: Statistical tools for managing big data

• Mahout: Analytics and data mining tools over big data

• Learn state-of-art technology from recent research papers

• Optimizations, indexing techniques, and other extensions to Hadoop

28

Open Source World’s Solution

 Google File System – Hadoop Distributed FS

 Map-Reduce – Hadoop Map-Reduce

 Sawzall – Pig, Hive, JAQL

 Big Table – Hadoop HBase, Cassandra

 Chubby – Zookeeper

Simplified Search Engine

Architecture

Spider Runtime
Batch Processing System

on top of Hadoop

SE Web ServerSearch Log StorageInternet

Simplified Data Warehouse

Architecture

Database
Batch Processing System

on top fo Hadoop

Web ServerView/Click/Events Log Storage

Business
Intelligence

Domain Knowledge

Hadoop History

 Jan 2006 – Doug Cutting joins Yahoo

 Feb 2006 – Hadoop splits out of Nutch and Yahoo starts

using it.

 Dec 2006 – Yahoo creating 100-node Webmap with

Hadoop

 Apr 2007 – Yahoo on 1000-node cluster

 Jan 2008 – Hadoop made a top-level Apache project

 Dec 2007 – Yahoo creating 1000-node Webmap with

Hadoop

 Sep 2008 – Hive added to Hadoop as a contrib project

Hadoop Introduction

 Open Source Apache Project

 http://hadoop.apache.org/

 Book: http://oreilly.com/catalog/9780596521998/index.html

 Written in Java

 Does work with other languages

 Runs on

 Linux, Windows and more

 Commodity hardware with high failure rate

Current Status of Hadoop

 Largest Cluster

 2000 nodes (8 cores, 4TB disk)

 Used by 40+ companies / universities over

the world

 Yahoo, Facebook, etc

 Cloud Computing Donation from Google and IBM

 Startup focusing on providing services for

hadoop

 Cloudera

Hadoop Components

 Hadoop Distributed File System (HDFS)

 Hadoop Map-Reduce

 Contributes

 Hadoop Streaming

 Pig / JAQL / Hive

 HBase

 Hama / Mahout

Hadoop Distributed File System

Goals of HDFS

 Very Large Distributed File System
 10K nodes, 100 million files, 10 PB

 Convenient Cluster Management
 Load balancing

 Node failures

 Cluster expansion

 Optimized for Batch Processing
 Allow move computation to data

 Maximize throughput

HDFS Architecture

HDFS Details

 Data Coherency
 Write-once-read-many access model

 Client can only append to existing files

 Files are broken up into blocks
 Typically 128 MB block size

 Each block replicated on multiple DataNodes

 Intelligent Client
 Client can find location of blocks

 Client accesses data directly from DataNode

HDFS User Interface

 Java API

 Command Line
 hadoop dfs -mkdir /foodir

 hadoop dfs -cat /foodir/myfile.txt

 hadoop dfs -rm /foodir myfile.txt

 hadoop dfsadmin -report

 hadoop dfsadmin -decommission datanodename

 Web Interface
 http://host:port/dfshealth.jsp

More about HDFS

 http://hadoop.apache.org/core/docs/current/hdfs_design.html

 Hadoop FileSystem API
 HDFS

 Local File System

 Kosmos File System (KFS)

 Amazon S3 File System

Hadoop Map-Reduce and

Hadoop Streaming

Hadoop Map-Reduce Introduction

 Map/Reduce works like a parallel Unix pipeline:
 cat input | grep | sort | uniq -c | cat > output

 Input | Map | Shuffle & Sort | Reduce | Output

 Framework does inter-node communication
 Failure recovery, consistency etc

 Load balancing, scalability etc

 Fits a lot of batch processing applications
 Log processing

 Web index building

Machine 2

Machine 1

<k1, v1>

<k2, v2>

<k3, v3>

<k4, v4>

<k5, v5>

<k6, v6>

(Simplified) Map Reduce Review

<nk1, nv1>

<nk2, nv2>

<nk3, nv3>

<nk2, nv4>

<nk2, nv5>

<nk1, nv6>

Local

Map

<nk2, nv4>

<nk2, nv5>

<nk2, nv2>

<nk1, nv1>

<nk3, nv3>

<nk1, nv6>

Global

Shuffle

<nk1, nv1>

<nk1, nv6>

<nk3, nv3>

<nk2, nv4>

<nk2, nv5>

<nk2, nv2>

Local

Sort

<nk2, 3>

<nk1, 2>

<nk3, 1>

Local

Reduce

Physical Flow

Example Code

Hadoop Streaming

 Allow to write Map and Reduce functions in any

languages
 Hadoop Map/Reduce only accepts Java

 Example: Word Count
 hadoop streaming

-input /user/zshao/articles

-mapper „tr “ ” “\n”‟

-reducer „uniq -c„

-output /user/zshao/

-numReduceTasks 32

Example: Log Processing

 Generate #pageview and #distinct users

for each page each day
 Input: timestamp url userid

 Generate the number of page views
 Map: emit < <date(timestamp), url>, 1>

 Reduce: add up the values for each row

 Generate the number of distinct users

 Map: emit < <date(timestamp), url, userid>, 1>

 Reduce: For the set of rows with the same

<date(timestamp), url>, count the number of distinct users by

“uniq –c"

Example: Page Rank

 In each Map/Reduce Job:
 Map: emit <link, eigenvalue(url)/#links>

for each input: <url, <eigenvalue, vector<link>> >

 Reduce: add all values up for each link, to generate the new

eigenvalue for that link.

 Run 50 map/reduce jobs till the eigenvalues are

stable.

TODO: Split Job Scheduler and Map-

Reduce

 Allow easy plug-in of different scheduling

algorithms
 Scheduling based on job priority, size, etc

 Scheduling for CPU, disk, memory, network bandwidth

 Preemptive scheduling

 Allow to run MPI or other jobs on the same

cluster
 PageRank is best done with MPI

Sender Receiver

TODO: Faster Map-Reduce
Mapper Receiver

sort

Sender

R1

R2

R3

…

R1

R2

R3

…

sort

Reducer

sort

Merge
Reduce

map

map

Mapper calls user functions:
Map and Partition

Sender does flow controlReceiver merge N flows into 1, call
user function Compare to sort, dump
buffer to disk, and do checkpointing

Reducer calls user functions:
Compare and Reduce

MapReduce and Hadoop
Distributed File System

B.Ramamurthy & K.Madurai

54

CCSCNE 2009 Palttsburg, April 24 2009

The Context: Big-data

 Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009)

 Google collects 270PB data in a month (2007), 20000PB a day (2008)

 2010 census data is expected to be a huge gold mine of information

 Data mining huge amounts of data collected in a wide range of domains
from astronomy to healthcare has become essential for planning and
performance.

 We are in a knowledge economy.

 Data is an important asset to any organization

 Discovery of knowledge; Enabling discovery; annotation of data

 We are looking at newer

 programming models, and

 Supporting algorithms and data structures.

 NSF refers to it as “data-intensive computing” and industry calls it “big-
data” and “cloud computing”

B.Ramamurthy & K.Madurai

55

CCSCNE 2009 Palttsburg, April 24 2009

Purpose of this talk

 To provide a simple introduction to:

 “The big-data computing” : An important
advancement that has a potential to impact
significantly the CS and undergraduate curriculum.

 A programming model called MapReduce for
processing “big-data”

 A supporting file system called Hadoop Distributed
File System (HDFS)

 To encourage educators to explore ways to infuse
relevant concepts of this emerging area into their
curriculum.

B.Ramamurthy & K.Madurai

56

CCSCNE 2009 Palttsburg, April 24 2009

The Outline

 Introduction to MapReduce

 From CS Foundation to MapReduce

 MapReduce programming model

 Hadoop Distributed File System

 Relevance to Undergraduate Curriculum

 Demo (Internet access needed)

 Our experience with the framework

 Summary

 References

B.Ramamurthy & K.Madurai

57

CCSCNE 2009 Palttsburg, April 24 2009

MapReduce

CCSCNE 2009 Palttsburg, April 24 2009 B.Ramamurthy & K.Madurai

58

What is MapReduce?

 MapReduce is a programming model Google has used
successfully is processing its “big-data” sets (~ 20000 peta
bytes per day)

 Users specify the computation in terms of a map and a
reduce function,

 Underlying runtime system automatically parallelizes the
computation across large-scale clusters of machines, and

 Underlying system also handles machine failures,
efficient communications, and performance issues.

-- Reference: Dean, J. and Ghemawat, S. 2008. MapReduce:
simplified data processing on large clusters. Communication of
ACM 51, 1 (Jan. 2008), 107-113.

B.Ramamurthy & K.Madurai

59

CCSCNE 2009 Palttsburg, April 24 2009

From CS Foundations to MapReduce

Consider a large data collection:

{web, weed, green, sun, moon, land, part, web,
green,…}

Problem: Count the occurrences of the different words
in the collection.

Lets design a solution for this problem;
 We will start from scratch

 We will add and relax constraints

 We will do incremental design, improving the solution for
performance and scalability

B.Ramamurthy & K.Madurai

60

CCSCNE 2009 Palttsburg, April 24 2009

Word Counter and Result Table

Data
collection

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

B.Ramamurthy & K.Madurai

61

ResultTable

Main

DataCollection

WordCounter

parse()
count()

{web, weed, green, sun, moon, land, part,
web, green,…}

CCSCNE 2009 Palttsburg, April 24 2009

Multiple Instances of Word Counter

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

B.Ramamurthy & K.Madurai

62

Thread

DataCollection ResultTable

WordCounter

parse()
count()

Main

1..*1..*

Data
collection

Observe:
Multi-thread
Lock on shared data

CCSCNE 2009 Palttsburg, April 24 2009

Improve Word Counter for Performance

B.Ramamurthy & K.Madurai

63

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

N
o

No need for lock

Separate counters

CCSCNE 2009 Palttsburg, April 24 2009

Peta-scale Data

B.Ramamurthy & K.Madurai

64

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

CCSCNE 2009 Palttsburg, April 24 2009

Addressing the Scale Issue

B.Ramamurthy & K.Madurai

65

 Single machine cannot serve all the data: you need a distributed
special (file) system

 Large number of commodity hardware disks: say, 1000 disks 1TB
each
 Issue: With Mean time between failures (MTBF) or failure rate of

1/1000, then at least 1 of the above 1000 disks would be down at a
given time.

 Thus failure is norm and not an exception.
 File system has to be fault-tolerant: replication, checksum
 Data transfer bandwidth is critical (location of data)

 Critical aspects: fault tolerance + replication + load balancing,
monitoring

 Exploit parallelism afforded by splitting parsing and counting
 Provision and locate computing at data locations

CCSCNE 2009 Palttsburg, April 24 2009

Peta-scale Data

B.Ramamurthy & K.Madurai

66

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

CCSCNE 2009 Palttsburg, April 24 2009

Peta Scale Data is Commonly Distributed

B.Ramamurthy & K.Madurai

67

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection Issue: managing the

large scale data

CCSCNE 2009 Palttsburg, April 24 2009

Write Once Read Many (WORM) data

B.Ramamurthy & K.Madurai

68

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

KEY web weed green sun moon land part web green …….

VALUE

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

Data
collection

Data
collection

Data
collection

Data
collection

CCSCNE 2009 Palttsburg, April 24 2009

WORM Data is Amenable to Parallelism

B.Ramamurthy & K.Madurai

69

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

Data
collection

Data
collection

1. Data with WORM
characteristics : yields
to parallel processing;

2. Data without
dependencies: yields
to out of order
processing

CCSCNE 2009 Palttsburg, April 24 2009

Divide and Conquer: Provision Computing at Data Location

B.Ramamurthy & K.Madurai

70

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

Data
collection

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

WordList

Thread

Main

1..*

1..*

DataCollection

Parser
1..*

Counter

1..*

ResultTable

Data
collection

For our example,
#1: Schedule parallel parse tasks
#2: Schedule parallel count tasks

This is a particular solution;
Lets generalize it:

Our parse is a mapping operation:
MAP: input  <key, value> pairs

Our count is a reduce operation:
REDUCE: <key, value> pairs reduced

Map/Reduce originated from Lisp
But have different meaning here

Runtime adds distribution + fault
tolerance + replication + monitoring +
load balancing to your base application!

One node

CCSCNE 2009 Palttsburg, April 24 2009

Mapper and Reducer

B.Ramamurthy & K.Madurai

71

Remember: MapReduce is simplified processing for larger data sets:
MapReduce Version of WordCount Source code

CCSCNE 2009 Palttsburg, April 24 2009

http://hadoop.apache.org/core/docs/current/mapred_tutorial.html

Map Operation

MAP: Input data  <key, value> pair

Data
Collection: split1

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

Split the data to
Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n

Map
…

…

Map

B.Ramamurthy & K.Madurai

72

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

web 1

green 1

… 1

KEY VALUE

…

CCSCNE 2009 Palttsburg, April 24 2009

Reduce

Reduce

Reduce

Reduce Operation

MAP: Input data  <key, value> pair

REDUCE: <key, value> pair  <result>

Data
Collection: split1 Split the data to

Supply multiple
processors

Data
Collection: split 2

Data
Collection: split n Map

Map
…

…

Map

B.Ramamurthy & K.Madurai

73

…

CCSCNE 2009 Palttsburg, April 24 2009

C
o

u
n

t
C

o
u

n
t

C
o

u
n

t

Large scale data splits

Parse-hash

Parse-hash

Parse-hash

Parse-hash

Map <key, 1> Reducers (say, Count)

P-0000

P-0001

P-0002

, count1

, count2

,count3

B.Ramamurthy & K.Madurai74CCSCNE 2009 Palttsburg, April 24 2009

Cat

Bat

Dog

Other
Words
(size:

TByte)

map

map

map

map

split

split

split

split

combine

combine

combine

reduce

reduce

reduce

part0

part1

part2

MapReduce Example in my operating systems class

B.Ramamurthy & K.Madurai

75

CCSCNE 2009 Palttsburg, April 24 2009

MapReduce Programming
Model

CCSCNE 2009 Palttsburg, April 24 2009 B.Ramamurthy & K.Madurai

76

MapReduce programming model

 Determine if the problem is parallelizable and solvable using
MapReduce (ex: Is the data WORM?, large data set).

 Design and implement solution as Mapper classes and
Reducer class.

 Compile the source code with hadoop core.

 Package the code as jar executable.

 Configure the application (job) as to the number of mappers
and reducers (tasks), input and output streams

 Load the data (or use it on previously available data)

 Launch the job and monitor.

 Study the result.

 Detailed steps.

B.Ramamurthy & K.Madurai

77

CCSCNE 2009 Palttsburg, April 24 2009

http://hadoop.apache.org/core/docs/current/mapred_tutorial.html

MapReduce Characteristics

 Very large scale data: peta, exa bytes
 Write once and read many data: allows for parallelism without

mutexes
 Map and Reduce are the main operations: simple code
 There are other supporting operations such as combine and

partition (out of the scope of this talk).
 All the map should be completed before reduce operation starts.
 Map and reduce operations are typically performed by the same

physical processor.
 Number of map tasks and reduce tasks are configurable.
 Operations are provisioned near the data.
 Commodity hardware and storage.
 Runtime takes care of splitting and moving data for operations.
 Special distributed file system. Example: Hadoop Distributed File

System and Hadoop Runtime.

B.Ramamurthy & K.Madurai

78

CCSCNE 2009 Palttsburg, April 24 2009

Classes of problems “mapreducable”

 Benchmark for comparing: Jim Gray’s challenge on data-
intensive computing. Ex: “Sort”

 Google uses it (we think) for wordcount, adwords, pagerank,
indexing data.

 Simple algorithms such as grep, text-indexing, reverse
indexing

 Bayesian classification: data mining domain

 Facebook uses it for various operations: demographics

 Financial services use it for analytics

 Astronomy: Gaussian analysis for locating extra-terrestrial
objects.

 Expected to play a critical role in semantic web and web3.0

B.Ramamurthy & K.Madurai

79

CCSCNE 2009 Palttsburg, April 24 2009

Scope of MapReduce

Pipelined Instruction level

Concurrent Thread level

Service Object level

Indexed File level

Mega Block level

Virtual System Level

Data size: small

Data size: large

B.Ramamurthy & K.Madurai

80

CCSCNE 2009 Palttsburg, April 24 2009

Hadoop

CCSCNE 2009 Palttsburg, April 24 2009 B.Ramamurthy & K.Madurai

81

What is Hadoop?

 At Google MapReduce operation are run on a special
file system called Google File System (GFS) that is
highly optimized for this purpose.

 GFS is not open source.

 Doug Cutting and Yahoo! reverse engineered the
GFS and called it Hadoop Distributed File System
(HDFS).

 The software framework that supports HDFS,
MapReduce and other related entities is called the
project Hadoop or simply Hadoop.

 This is open source and distributed by Apache.

B.Ramamurthy & K.Madurai

82

CCSCNE 2009 Palttsburg, April 24 2009

Basic Features: HDFS

 Highly fault-tolerant

 High throughput

 Suitable for applications with large data sets

 Streaming access to file system data

 Can be built out of commodity hardware

B.Ramamurthy & K.Madurai

83

CCSCNE 2009 Palttsburg, April 24 2009

Hadoop Distributed File System

B.Ramamurthy & K.Madurai

84

Application

Local file
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated

CCSCNE 2009 Palttsburg, April 24 2009

More details: We discuss this in great detail in my Operating
Systems course

HDFS.ppt

Hadoop Distributed File System

B.Ramamurthy & K.Madurai

85

Application

Local file
system

Master node

Name Nodes

HDFS Client

HDFS Server

Block size: 2K

Block size: 128M
Replicated

CCSCNE 2009 Palttsburg, April 24 2009

More details: We discuss this in great detail in my Operating
Systems course

heartbeat

blockmap

HDFS.ppt

Relevance and Impact on Undergraduate courses

 Data structures and algorithms: a new look at traditional
algorithms such as sort: Quicksort may not be your
choice! It is not easily parallelizable. Merge sort is better.

 You can identify mappers and reducers among your
algorithms. Mappers and reducers are simply place
holders for algorithms relevant for your applications.

 Large scale data and analytics are indeed concepts to
reckon with similar to how we addressed “programming
in the large” by OO concepts.

 While a full course on MR/HDFS may not be warranted,
the concepts perhaps can be woven into most courses in
our CS curriculum.

B.Ramamurthy & K.Madurai

86

CCSCNE 2009 Palttsburg, April 24 2009

Demo

 VMware simulated Hadoop and MapReduce demo

 Remote access to NEXOS system at my Buffalo office

 5-node HDFS running HDFS on Ubuntu 8.04

 1 –name node and 4 data-nodes

 Each is an old commodity PC with 512 MB RAM,
120GB – 160GB external memory

 Zeus (namenode), datanodes: hermes, dionysus,
aphrodite, athena

B.Ramamurthy & K.Madurai

87

CCSCNE 2009 Palttsburg, April 24 2009

Summary

 We introduced MapReduce programming model for
processing large scale data

 We discussed the supporting Hadoop Distributed
File System

 The concepts were illustrated using a simple example

 We reviewed some important parts of the source
code for the example.

 Relationship to Cloud Computing

B.Ramamurthy & K.Madurai

88

CCSCNE 2009 Palttsburg, April 24 2009

References

1. Apache Hadoop Tutorial: http://hadoop.apache.org
http://hadoop.apache.org/core/docs/current/mapred_tu
torial.html

2. Dean, J. and Ghemawat, S. 2008. MapReduce:
simplified data processing on large clusters.
Communication of ACM 51, 1 (Jan. 2008), 107-113.

3. Cloudera Videos by Aaron Kimball:

http://www.cloudera.com/hadoop-training-basic

4. http://www.cse.buffalo.edu/faculty/bina/mapreduce.html

B.Ramamurthy & K.Madurai

89

CCSCNE 2009 Palttsburg, April 24 2009

http://hadoop.apache.org/
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://hadoop.apache.org/core/docs/current/mapred_tutorial.html
http://www.cloudera.com/hadoop-training-basic
http://www.cloudera.com/hadoop-training-basic
http://www.cloudera.com/hadoop-training-basic
http://www.cloudera.com/hadoop-training-basic
http://www.cloudera.com/hadoop-training-basic

Hive - SQL on top of Hadoop

Map-Reduce and SQL

• Map-Reduce is scalable
– SQL has a huge user base

– SQL is easy to code

• Solution: Combine SQL and Map-Reduce
– Hive on top of Hadoop (open source)

– Aster Data (proprietary)

– Green Plum (proprietary)

Hive

• A database/data warehouse on top of Hadoop
– Rich data types (structs, lists and maps)

– Efficient implementations of SQL filters, joins and group-
by’s on top of map reduce

• Allow users to access Hive data without using
Hive

• Link:

– http://svn.apache.org/repos/asf/hadoop/hive/
trunk/

Hive Architecture

HDFS

Hive CLI

DDLQueriesBrowsing

Map Reduce

SerDe

Thrift Jute JSON

Thrift API

MetaStore

Web UI

Mgmt, etc

Hive QL

Planner ExecutionParser Planner

Hive QL – Join

• SQL:
INSERT INTO TABLE pv_users

SELECT pv.pageid, u.age

FROM page_view pv JOIN user u ON (pv.userid = u.userid);

pag

eid

use

rid

time

1 111 9:08:

01

2 111 9:08:

13

1 222 9:08:

14

use

rid

age gende

r

111 25 femal

e

222 32 male

pag

eid

age

1 25

2 25

1 32

X =

page_view
user

pv_users

Hive QL – Join in Map Reduce

key value

111 <1,1

>

111 <1,2

>

222 <1,1

>

pag

eid

use

rid

time

1 111 9:08:

01

2 111 9:08:

13

1 222 9:08:

14

use

rid

age gende

r

111 25 femal

e

222 32 male

page_view

user

pv_users

key valu

e

111 <2,2

5>

222 <2,3

2>

Map

key valu

e

111 <1,1

>

111 <1,2

>

111 <2,2

5>

key valu

e

222 <1,1

>

222 <2,3

2>

Shuffle

Sort

pag

eid

age

1 25

2 25

page

id

age

1 32

Reduce

Hive QL – Group By

• SQL:
▪ INSERT INTO TABLE pageid_age_sum

▪ SELECT pageid, age, count(1)

▪ FROM pv_users

– GROUP BY pageid, age;

pag

eid

age

1 25

2 25

1 32

2 25

pv_users

pag

eid

age Co

unt

1 25 1

2 25 2

1 32 1

pageid_age_sum

Hive QL – Group By in Map Reduce

pag

eid

age

1 25

2 25

pv_users

pag

eid

age Co

unt

1 25 1

1 32 1

pageid_age_sum

pag

eid

age

1 32

2 25

Map

key valu

e

<1,

25>

1

<2,

25>

1

key valu

e

<1,

32>

1

<2,

25>

1

key valu

e

<1,

25>

1

<1,

32>

1

key valu

e

<2,

25>

1

<2,

25>

1

Shuffle

Sort

pag

eid

age Cou

nt

2 25 2

Reduce

Hive QL – Group By with Distinct

• SQL
– SELECT pageid, COUNT(DISTINCT userid)

– FROM page_view GROUP BY pageid

pag

eid

user

id

time

1 111 9:08:

01

2 111 9:08:

13

1 222 9:08:

14

2 111 9:08:

20

page_view

page

id

count_distinct

_userid

1 2

2 1

result

Hive QL – Group By with Distinct in Map
Reduce

page_view

page

id

cou

nt

1 2
Shuffle

and

Sort

page

id

cou

nt

2 1

Reduce

page

id

useri

d

time

1 111 9:08:

01

2 111 9:08:

13
page

id

useri

d

time

1 222 9:08:

14

2 111 9:08:

20

key v

<1,111

>

<1,22

2>

key v

<2,111

>

<2,111

>
Shuffle key is a prefix of the sort key.

Hive QL: Order By

page_view

Shuffle

and

Sort
Reduce

page

id

useri

d

time

2 111 9:08:

13

1 111 9:08:

01
page

id

useri

d

time

2 111 9:08:

20

1 222 9:08:

14

key v

<1,111

>

9:08:

01

<2,111

>

9:08:

13

key v

<1,22

2>

9:08:

14

<2,111

>

9:08:

20

page

id

useri

d

time

1 111 9:08:

01

2 111 9:08:

13
page

id

useri

d

time

1 222 9:08:

14

2 111 9:08:

20

Shuffle randomly.

Hive Optimizations
Efficient Execution of SQL on top of Map-Reduce

Machine 2

Machine 1

<k1, v1>

<k2, v2>

<k3, v3>

<k4, v4>

<k5, v5>

<k6, v6>

(Simplified) Map Reduce Revisit

<nk1, nv1>

<nk2, nv2>

<nk3, nv3>

<nk2, nv4>

<nk2, nv5>

<nk1, nv6>

Local

Map

<nk2, nv4>

<nk2, nv5>

<nk2, nv2>

<nk1, nv1>

<nk3, nv3>

<nk1, nv6>

Global

Shuffle

<nk1, nv1>

<nk1, nv6>

<nk3, nv3>

<nk2, nv4>

<nk2, nv5>

<nk2, nv2>

Local

Sort

<nk2, 3>

<nk1, 2>

<nk3, 1>

Local

Reduce

Merge Sequential Map Reduce Jobs

• SQL:

– FROM (a join b on a.key = b.key) join c on a.key =
c.key SELECT …

ke

y

av bv

1 11

1

22

2

ke

y

av

1 111

A

Map Reduce
ke

y

bv

1 22

2

B

ke

y

cv

1 33

3

C

AB

Map Reduce
ke

y

av bv cv

1 11

1

22

2

33

3

ABC

Share Common Read Operations

• Extended SQL
▪ FROM pv_users

▪ INSERT INTO TABLE
pv_pageid_sum

▪ SELECT pageid, count(1)

▪ GROUP BY pageid

▪ INSERT INTO TABLE pv_age_sum

▪ SELECT age, count(1)

▪ GROUP BY age;

pag

eid

ag

e

1 25

2 32

Map Reduce

pag

eid

cou

nt

1 1

2 1

pag

eid

ag

e

1 25

2 32

Map Reduce

age cou

nt

25 1

32 1

Load Balance Problem

pag

eid

ag

e

1 25

1 25

1 25

2 32

1 25

pv_users

pag

eid

ag

e

cou

nt

1 25 4

2 32 1

pageid_age_sum

Map-Reduce

pag

eid

ag

e

cou

nt

1 25 2

2 32 1

1 25 2

pageid_age_partial_sum

Map-Reduce

Machine 2

Machine 1

<k1, v1>

<k2, v2>

<k3, v3>

<k4, v4>

<k5, v5>

<k6, v6>

Map-side Aggregation / Combiner

<male, 343>

<female, 128>

<male, 123>

<female, 244>

Local

Map

<female, 128>

<female, 244>

<male, 343>

<male, 123>

Global

Shuffle

<male, 343>

<male, 123>

<female, 128>

<female, 244>

Local

Sort

<female, 372>

<male, 466>

Local

Reduce

Query Rewrite

• Predicate Push-down

– select * from (select * from t) where col1 = ‘2008’;

• Column Pruning

– select col1, col3 from (select * from t);

TODO: Column-based Storage and Map-side Join

url page

quality

IP

http://a.co

m/

90 65.1.2.3

http://b.co

m/

20 68.9.0.81

http://c.co

m/

68 11.3.85.1

url clicked viewed

http://a.com/ 12 145

http://b.com/ 45 383

http://c.com/ 23 67

MetaStore

• Stores Table/Partition properties:
– Table schema and SerDe library

– Table Location on HDFS

– Logical Partitioning keys and types

– Other information

• Thrift API
– Current clients in Php (Web Interface), Python (old CLI),

Java (Query Engine and CLI), Perl (Tests)

• Metadata can be stored as text files or even in a
SQL backend

Hive CLI

• DDL:
– create table/drop table/rename table

– alter table add column

• Browsing:
– show tables

– describe table

– cat table

• Loading Data

• Queries

Web UI for Hive

• MetaStore UI:

– Browse and navigate all tables in the system

– Comment on each table and each column

– Also captures data dependencies

• HiPal:

– Interactively construct SQL queries by mouse clicks

– Support projection, filtering, group by and joining

– Also support

Hive Query Language

• Philosophy
– SQL

– Map-Reduce with custom scripts (hadoop streaming)

• Query Operators
– Projections

– Equi-joins

– Group by

– Sampling

– Order By

Hive QL – Custom Map/Reduce Scripts

• Extended SQL:
• FROM (

• FROM pv_users

• MAP pv_users.userid, pv_users.date

• USING 'map_script' AS (dt, uid)

• CLUSTER BY dt) map

• INSERT INTO TABLE pv_users_reduced

• REDUCE map.dt, map.uid

• USING 'reduce_script' AS (date, count);

• Map-Reduce: similar to hadoop streaming

